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In this paper, we examine the generation of pressure and lift forces in a random soft
fibrous media layer that is confined between two planar surfaces, an infinite horizontal
lower boundary and a horizontal inclined upper boundary, in the lubrication limit
where the characteristic thickness of the fibre layer H � L the length of the inclined
surface. The model for the fibre layer is a Brinkman equation and the Darcy
permeability Kp is described by the widely used Carman–Kozeny equation for
random porous media. Two cases are considered: (a) an inclined upper boundary
which slides freely on top of a stationary fibre layer which is firmly attached to the
lower boundary and (b) an inclined stationary upper boundary with an attached fibre
layer in which the horizontal lower boundary slides freely in its own plane beneath
it. Superficially, the problems appear equivalent to the classical problem for a slider
bearing where the solutions for the pressure distribution and lift force are independent
of which boundary is moving. In this problem there is an optimum compression ratio
k = h1/h2 = 2.2, where h1 and h2 are the heights at the leading and trailing edges, for
maximum lift force. However, this symmetry is lost if the intervening space is filled
with a soft porous fibrous material since the Brinkman equation is not invariant
under a transformation of coordinates in which the inherently unsteady problem
in case (a) is transformed to a steady reference frame in which the inclined upper
boundary is stationary and the horizontal boundary with the adhered fibre layer
moves below it. Although in the steady reference frame case (a) now appears to
resemble case (b), the solutions are strikingly different and depend critically on the
value of the dimensionless fibre interaction layer thickness α = H/

√
Kp . For α � 1

the solutions for both cases approach the classical solution for a slider bearing. For
α � 1 we show, using asymptotic analysis that the solutions diverge dramatically.
In case (a) the pressure and lift force increase as α2 and asymptotically approach
a limiting behaviour for large values of α, first predicted in Feng and Weinbaum
(J. Fluid Mech., vol. 422, 2000, p. 288), while in case (b) the pressure and lift force
decay as α−2 since the inclined upper boundary is screened by the fibre layer and the
amount of fluid dragged through the fluid gap decreases as α increases and vanishes
for α � 1. The solution in case (a), where the inclined upper boundary moves, is
of particular interest since it reveals the potential to generate enormous lift forces
using commercially available inexpensive soft porous materials provided the lateral
leakage at the edge of the planform can be eliminated through the use of a channel
with impermeable sidewalls as first proposed in the work by Wu, Andreopolous and
Weinbaum (Phys. Rev. Lett., vol. 93, 2004, p. 194501). The behaviour is illustrated for
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both a toboggan sliding in such a channel and a larger planform that might be useful
in commercial transportation.

1. Introduction
In this paper, we examine the generation of pressure and lift forces in a random soft

fibrous media layer that is confined between two planar surfaces, an infinite horizontal
lower boundary and a horizontal inclined upper boundary, in the lubrication limit
where the characteristic thickness of the fibre layer H � L the length of the inclined
surface. This type of flow has arisen in a number of important flow applications in
which unexplained or unusual behaviour has either been observed or theoretically
predicted. These include: (i) the anomalous behaviour observed in the single file
motion of red cells in vivo and in small glass tubes of comparable diameter (Pries
et al. 1994; Pries, Secomb & Gaehtgens 2000), (ii) the striking similarity between a red
cell gliding on the endothelial glycocalyx (0.2–0.5 μm thick fibre matrix layer coating
the inner lining of all our blood vessels) and a human being snow boarding on fresh
snow powder (Feng and Weinbaum 2000; Wu et al. 2006) and (iii) the possibility of
generating vastly enhanced lift forces using a novel track in which an inclined planar
surface rides on a soft porous fibre layer in a channel with impermeable side walls
(Wu, Andreopolous & Weinbaum 2004).

The studies in (i) describe a fundamental paradox that attracted considerable
attention in the biorheology community in the 1980s and 1990s. Numerous
experimental studies summarized in Pries et al. (1994, 2000) had clearly shown
that the flow resistance of red cells moving single file in true capillaries had several
times the resistance of red cells moving in narrow glass tubes of comparable diameter,
reviewed in Chien, Usami & Skalak (1984). This was particularly evident in capillaries
of 5–6 μm diameter where the 8 μm red cell underwent large deformations from its
biconcave disc shape and assumed the shape of a moving bolus. Superficially, the
flow problems appeared to be identical, but Vink and Duling (1996) demonstrated
in vivo that the inner lining of our capillaries was lined with a ubiquitous endothelial
glycocalyx layer of 0.4–0.5 μm thickness. The properties of this layer and its various
functions have recently been reviewed in Weinbaum, Tarbell & Damiano (2007). One
of the most striking observations in Vink and Duling was the so-called ‘popout’
phenomenon in which a red cell starting from rest would rise out of the layer as its
velocity increased and at a velocity greater than 20 μm s−1 enter the central lumen of
the vessel where upon it would move above the glycocalyx edge on a thin lubricating
film. This was explained in Feng and Weinbaum (2000), using a lubrication theory
for soft porous media in which the authors predicted that greatly enhanced lift forces
could be produced in the glycocalyx layer at velocities less than 20 μms−1 due to
the large increase in pressure in the trapped porous layer between the red cell and
the endothelial cell membranes. Detailed calculations in Secomb, Hsu & Pries (2001)
clearly confirmed this prediction for a flexible red cell moving axisymmetrically along
the axis of a cylindrical tube lined with a compressible matrix layer satisfying the
Brinkman equation. In marked contrast, red cells in glass tubes appear to fill nearly
the entire lumen of the tube when moving at both high and low speeds suggesting
that if there was an adhered layer of macromolecules coating the red cell membrane
these lift forces were either absent or greatly diminished.
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Figure 1. Schematic illustration of the present model for sliding motion of a rigid surface
over or beneath a thin layer of a soft fibre matrix. (a) Inclined planar surface moves over a
stationary matrix attached to the lower boundary. (b) Horizontal planar surface moves beneath
a stationary matrix attached to the inclined upper boundary.

The red cells moving in narrow glass tubes and in capillaries illustrate the two
superficially similar flow geometries that will be examined in this paper. In the case
of the red cells moving in capillaries (figure 1a), a planing surface is moving with
a small tilt angle relative to a horizontal rigid boundary with an attached matrix
layer. This is an inherently unsteady problem in which the lower boundary and its
attached fibre layer are stationary and the latter is being compressed by the tilt of
the moving upper boundary which drives the fluid through the attached porous layer.
The theories of Weinbaum et al. (2003) and Han et al. (2006) show that if the fibres
have a flexural rigidity EI of ∼500 pN nm2, this would be sufficient to prevent any
significant change in thickness of the glycocalyx layer when it is exposed to fluid shear
stresses in the physiological range at its top surface. However, this flexural rigidity
would be insufficient to prevent the layer from collapsing when the motion of the
red cell is arrested. Weinbaum et al. propose that the major function of the small
flexural rigidity of the glycocalyx fibres is the transmission of fluid shear stresses to
the internal actin cytoskeleton of the cell in mechanotransduction. This was clearly
demonstrated in Thi et al. (2004) where cytoskeletal responses were abrogated when
the glycocalyx was enzymatically compromised. The resistance to compression of the
glycocalyx has also been attributed to oncotic forces arising from trapped proteins in
the layer (Secomb, Hsu & Pries 2001) or electro-chemical repulsive forces (Damiano
and Stace 2002). In the case of red cells moving in glass tubes, where a matrix layer
is also believed to be attached to the red cell membrane (figure 1b), one has a steady
problem. Here both the red cell and its attached matrix layer are stationary and the
horizontal lower boundary moves beneath it without any compression of the matrix.

The mechanical properties of the glycocalyx have been largely deduced from the
nonlinear elastic recoil of the glycocalyx layer after the passage of a tightly fitting
white cell. This recoil is described using large deformation ‘elastica’ theory for the
fibres and a Brinkman equation for the fluid motion in Han et al. (2006). A more
general small deformation theory for the deformation of the fibres when subject to
oscillating fluid shear stress is presented in Han, Ganatos & Weinbaum (2005). In
the present analysis the shear deformation of the fibres is neglected but the variation
in permeability Kp due to the local compression of the layer is considered. It is
assumed that the fibres compress easily and contribute negligibly to the lift forces
exerted on the inclined upper boundary. In the absence of this elastic restoring force
there is little friction between the fibres and inclined upper boundary. Similarly, for
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the soft fibre-fill used in the applications given in § 6 one observes only minor shear
deformations of the matrix.

The enhanced pressure and lift forces generated in the matrix by the motion of
the inclined upper boundary in figure 1(a) was first treated in Feng & Weinbaum
(2000), who developed a two-dimensional generalized lubrication theory for highly
compressible porous media using effective medium theory based on the use of the
Brinkman equation. Prior analyses by Damiano (1998) and Secomb, Hsu & Pries
(1998) also used a Brinkman equation to describe the flow in the glycocalyx layer, but
the red cells did not invade the layer and a thin layer of fluid was assumed to exist
between the edge of the layer and the red cell membrane. In Feng & Weinbaum (2000)
the authors also treat the Darcy permeability parameter α = H/

√
Kp as a spatially

varying parameter that takes account of the local elastic compression of the fibres.
The two most striking predictions of this analysis were that (i) greatly enhanced lift
forces could be generated that scaled as α2 for large α as the compression of the fibre
matrix increased and (ii) as unexpected as it might seem at first glance, the value of α

for a red cell gliding on the glycocalyx layer, which was estimated as 160, was nearly
the same as a human snowboarding on fresh snow powder, although the red cell
and human differ in mass by 15 orders of magnitude. In this initial study the Darcy
permeability Kp was computed for a deformed periodic array of parallel cylindrical
fibres using an extension of the theory of Sangani and Acrivos (1982) for Stokes flow
transverse to the fibre array.

One of the unexpected predictions of the analysis in Feng & Weinbaum (2000) was
that, there was no optimum compression ratio, k = h1/h2, where the lift force could
be maximized when h1 is fixed. Here the subscripts 1 and 2 refer to the leading and
trailing edges, respectively, of the planar surface. In marked contrast, for classical
lubrication theory, α = 0 (no fibres present), one of the best known results for a slider
bearing is that for k = 2.2, one obtains maximum lift when the height of the trailing
edge h2 is held fixed. Another well-known result of classical lubrication theory for the
slider bearing is that the pressure distribution in the fluid gap is identical whether
the inclined upper boundary or the flat lower boundary is moving. This does not
hold true when the intervening layer is a confined porous media where a dramatic
difference in behaviour emerges as α increases for α > 1 depending on whether the
matrix is attached to the horizontal lower or inclined upper boundary. We shall
show herein that the pressure distribution decays to zero in case (b) where the lower
boundary moves and the inclined boundary and matrix are stationary, whereas in case
(a) where the inclined upper boundary moves and the lower boundary and matrix
are stationary, one obtains the huge increase in lift described in Feng & Weinbaum
(2000) as α increases. These paradoxical behaviours are analysed in the present paper
both numerically and using asymptotic analysis for small and large values of α.

Subsequent to Feng & Weinbaum (2000), Wu et al. (2005) theoretically and
experimentally explored the large α behaviour for snow using a novel piston-porous
cylinder apparatus where the escape of air from the compressed snow layer was
examined on the time scale of skiing or snowboarding for the first time. These results
were then used to develop a more general theory for skiing and snowboarding wherein
the forces and moments due to both the trapped air and the compressed solid phase
of the ice crystals were taken into account and empirically determined values of the
Darcy permeability of snow were employed for different snow conditions (Wu et al.
2006). However, in either skiing or snowboarding there is a large loss of pore pressure
at the lateral edges of the ski or snowboard and the pressure and lift force decrease
as (W/L)2 for large α where W is the width of the planing surface. This observation
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led the authors in Wu et al. (2004) to propose a novel soft porous track wherein
the fibre layer is attached to the bottom boundary of a channel with impermeable
sidewalls. This would enable one to exploit the full effect of the huge increase in
lift for α � 1 by eliminating the loss of pressure at the lateral edges. For this case,
the two-dimensional analysis in Feng & Weinbaum (2000) for a ski or snowboard
reduces to the much simpler unidirectional flow geometry in figure 1(a). Wu et al.
(2004) also show that this new track had the potential to support the weight of a
train car moving at relatively modest speeds on synthetic porous materials, which had
the permeability properties of down feathers. This prediction led to a search for a
soft durable inexpensive porous material with similar permeability properties and the
discovery that the polyester fibres used in inexpensive body pillows were ideal for this
application (Mirbod, Andreopoulos & Weinbaum in press). This fibre-fill material is
more adequately described by the widely used empirical Carman–Kozeny equation for
random porous media. The calculations in the present study are performed using this
empirical relation and the results applied to both a toboggan riding on a soft porous
track and a jet train that is described in much greater detail in Mirbod et al. (in press).

In F&W and all previous studies of the glycocalyx layer, the flow in the matrix
has been described using a Brinkman equation. As pointed out by the reviewers,
the Darcy term in the Brinkman equation is not frame invariant under a Galilean
transformation in which the flow geometry in case (a) (figure 1a) is transformed to a
steady coordinate system in which the observer rides on the inclined upper boundary
and the lower boundary with its attached matrix moves with uniform velocity U to
the left. Although cases (a) and (b) now look similar, they differ as the matrix is
attached (a) to the lower boundary and (b) to the upper boundary. This difference
leads to a new α2 term in the generalized dimensionless Brinkman equation which
is related to the flow that is generated by the tilt of the moving upper boundary
in the original unsteady coordinate system in figure 1(a). This generalized equation,
which is based on binary mixture theory for a dilute solid constituent takes account
of the relative motion of the fluid and solid phases in the description of the Darcy
term (Roy & Damiano 2008). The pressure and lift force are unaffected since they
are independent of the velocity transformation.

The paper is organized into six sections. In § 2, the governing equations for cases (a)
and (b) are derived. In § 3, we examine the behaviour of the Carman–Kozeny equation
for a random array of cylindrical fibres of uniform radius. In § 4, we numerically solve
the governing equations for cases (a) and (b) and perform an asymptotic analysis for
small and large values of α for both flow geometries. In § 5, we present the results,
and in § 6 we briefly describe the applications.

2. Lubrication theory for the fibrous layer
Classical lubrication theory was initially developed by Reynolds for an

incompressible Newtonian fluid (Schlichting 1979). This was subsequently generalized
for Newtonian fluids with variable properties and non-Newtonian fluids. The theory
has been applied to both impermeable and porous walled journal-bearing systems. A
more recent application of lubrication theory has been to biological systems where the
walls are not porous, but the lubricating layer itself is a soft porous medium. As first
proposed by Damiano (1998) and Secomb et al. (1998), this layer has been described
by a Brinkman equation (Brinkman 1947) in nearly all subsequent theoretical analyses.
Shortly thereafter, Feng & Weinbaum (2000) demonstrated that if the red cell entered
the glycocalyx layer its compression could be large leading to significant variations in
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the Darcy permeability Kp and dramatic changes in the pressure distribution in the
layer for large compressions.

The inherently unsteady-flow problem in figure 1(a) can be readily converted to
a steady flow in which a fix observer sits on the inclined upper boundary and the
lower boundary with its attached matrix moves with velocity ūs = − U i to the left
beneath it. In this new steady (x ′, z′) coordinate system the absolute velocity of the
fluid in the x ′-direction is ū = u′ i and the relative velocity between the fluid and solid
constituents which appears in the Darcy term is ū − ūs =(u′ + U )i . The generalized
Brinkman equation for the motion of the fluid in the steady coordinate system is
given by Roy and Damiano (2008) as

∂2u′

∂z′2 − u′ + U

Kp

=
1

μ

dp′

dx ′ . (2.1)

Here μ is the fluid viscosity, p′ is the fluid pressure and primes indicate dimensional
quantities. Equation (2.1) can be written in dimensionless form by introducing the
dimensionless quantities

x =
x ′

L
, z =

z′

h′ , h =
h′

H
, p =

p′H 2

μLU
, u =

u′

U
. (2.2)

Here L is the length of the planing surface, h(x,t) is a local dimensionless height
scaled by H a convenient reference height and U is the magnitude of the velocity of
the lower boundary and solid phase. The dimensionless form of (2.1) is

∂2u

∂z2
− α2(u + 1) =

dp

dx
. (2.3)

The solution to (2.3) which satisfies the no-slip boundary conditions u(x, 0) = −1
at z = 0 and u(x, h) = 0 at z = h is given by

u(x, z) =
sinhαz

sinhαh
+

1

α2

∂p

∂x

[
coshαz − 1 − sinhαz

sinhαh
(coshαh − 1)

]
− 1. (2.4)

The corresponding flux in the x-direction is computed by integrating over the local
dimensionless channel height

Q =

∫ h

0

udz = f +
1

α2

∂p

∂x
(2f − h) − h, (2.5)

where,

f =
coshαh − 1

α sinhαh
, α =

H√
Kp

. (2.6)

Here α is a dimensionless permeability parameter defined in terms of Kp the
dimensional Darcy permeability. In the transformed steady coordinate system the
flux Q is a constant from continuity and thus,

dQ

dx
= 0. (2.7)

Combining (2.5) and (2.7) one has,

∂

∂x

[
f +

1

α2

dp

dx
(2f − h)

]
=

dh

dx
. (2.8)
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This last result is the same as (2.25) in Feng & Weinbaum (2000), which was derived
without using this coordinate transformation. The results for the velocity profiles and
streamlines are also plotted in the moving unsteady coordinate system in Feng &
Weinbaum (2000). The pressure profiles and lift forces are independent of coordinate
system.

For case (b) (figure 1b) there is no need to transform coordinates since the matrix is
attached to the stationary inclined upper boundary and the horizontal lower boundary
moves in its own plane to the right. Thus ūs = 0, the α2 term in (2.3) is missing, and
the second term reduces to −α2U . There is no compression of the porous media as
in case (a). The solution of (2.3) with the α2 term missing which satisfies the no-slip
boundary conditions u(x, 0) = +1 at z = 0 and u(x, h) = 0 at z =h is given by

u(x, z) = − coshαh
sinhαz

sinhαh
+ coshαz +

1

α2

∂p

∂x

[
coshαz − 1 − sinhαz

sinhαh
(coshαh − 1)

]
.

(2.9)

The corresponding flux in the x-direction is given by

Q =

∫ h

0

udz = f +
1

α2

∂p

∂x
(2f − h). (2.10)

Again continuity requires that Q is constant or

dQ

dx
= 0. (2.11)

Combining (2.10) and (2.11), in case (b) one has,

∂

∂x

[
f +

1

α2

dp

dx
(2f − h)

]
= 0. (2.12)

In cases (a) and (b) h2 is fixed and chosen as the reference height H. The term on the
right-hand side of (2.8) is due to the forward motion of the upper inclined plane in
figure 1(a), which compresses the stationary matrix layer, whereas this term vanishes
in (2.12) because the inclined upper boundary and its attached matrix are stationary.
In classical lubrication theory it does not make any difference which plane is moving
since the starting momentum equation without the second term on the left-hand side
of (2.1) is invariant under a Galilean coordinate transformation.

The Reynolds equations (2.8) and (2.12) can be solved for the pressure distribution
using appropriate boundary conditions. Once the pressure field is determined, the
velocity profiles and the lift force are readily obtained. These results are presented
and discussed in §§ 4 and 5.

3. Permeability of the fibrous media
In F&W the variation of Kp with x is determined by solving the Stokes creeping

motion equations for the flow perpendicular to the axis of an array of circular
cylindrical fibres whose vertical spacing changes proportionally with the local
dimensionless height h. In the present application we shall consider a random array
of cylindrical fibres of uniform diameter. This is a very good representation for
the inexpensive polyester fibre-fill that is extensively used in commercially available
pillows. This material has been chosen because of the applications that are discussed
in § 6. A random fibre array of this nature is most conveniently described by the
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widely used empirical Carman–Kozeny equation (see Happel and Brenner 1983)

Kp =
ε3

Gs2
0 (1 − ε)2

, (3.1)

where ε is the void fraction, (1− ε) is the solid fraction, G is the empirically measured
Kozeny constant and s0 is the Carman-specific surface, defined as the area of the
surface that is exposed to the fluid per unit volume of the solid phase. For cylindrical
fibres of radius rf

s0 =
2πrf Lf

πr2
f Lf

=
2

rf

, (3.2)

where Lf is the total fibre length per unit volume. For these fibres, (3.1) becomes

Kp =
r2
f ε3

4G(1 − ε)2
. (3.3)

The value of G depends on the porosity. When the fibres are randomly oriented,
Happel and Brenner (1983) give the following expression for G(ε):

G(ε) =
2ε3

3(1 − ε)

{
1

−2 ln(1 − ε) − 3 + 4(1 − ε) − (1 − ε)2

+
2

− ln(1 − ε) − [1 − (1 − ε)2]/[1 + (1 − ε)2]

}
. (3.4a)

When ε →1, (3.4a) is frequently approximated by (Truskey, Yuan & Katz, 2004)

G(ε) → −5

3(1 − ε) ln(1 − ε)
. (3.4b)

One observes from (3.3) that Kp/r2
f is only a function of (1 − ε) for both (3.4a) and

(3.4b) when ε → 1. Since (1 − ε) will be less than 0.01 for all values of α considered
herein, one concludes from figure 2 that Kp/r2

f is closely approximated by

Kp

r2
f

= − 3

20

ln(1 − ε)

(1 − ε)
, (3.5)

obtained by combining (3.3) and (3.4b).
The variation of Kp/r2

f as a function of h/h2 is obtained directly from the curves
in figure 2. A relatively simple and reasonable assumption is that when the fibre layer
is compressed the increase in fibre density is locally proportional to the decrease in
height of the fibre layer as a function of x. Thus, the solid fraction (1 − ε) decreases
as h2/h where h2 is the height of the layer at the leading edge of the planform in case
(b) and the trailing edge in case (a). Using (3.5) and the foregoing assumptions for
the variation of Kp with h, one can define a dimensionless local Darcy permeability

K̃p by

K̃p =
Kp(h)

Kp2

= h − h lnh

ln(1 − ε2)
, (3.6)

where Kp2
is the minimum value at h = h2. Figure 3 shows the variation of Kp(h)/Kp2

as a function of h/h2 for representative values of (1 − ε2) in which ε2 is the void
fraction at h = h2. The value of (1 − ε) for the polyester fibre-fill in the undeformed
state in our applications in § 6 is 0.00467.
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4. Solutions to boundary value problem
A general solution to the boundary value problem for (2.8) and (2.12) can be

obtained by applying boundary conditions at the leading and trailing edges of the
planform, x =0 and 1. This general solution was previously obtained for case (a),
inclined upper boundary moving, in Feng & Weinbaum (2000), but is included herein
for easy comparison with case (b), which is new. We will then examine the behaviour
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of these solutions for both α � 1 and α � 1. In the small α limit it is clear that cases
(a) and (b) are identical for α = 0, but differ by the α2 term in (2.3) for α > 0. We shall
use perturbation theory to calculate the lowest order corrections for the pressure dis-
tribution in the two cases. In the large α limit the two solutions dramatically diverge,
one solution for pressure and lift force increasing as α2 and the other decaying as α–2.

The general solutions to (2.8) and (2.12) can be obtained for an arbitrary variation
of h(x) assuming that Kp , and hence α, only vary with x. Note also that the tilt
of the inclined boundary has been reversed for the two cases so that the pressure
profiles will not lie on top of one another in the small α limit. As discussed in
the previous section the compression of the fibre layer is assumed to be locally
uniform throughout the height of the layer. The first integrals of (2.8) and (2.12)
are

f +
1

α2

dp

dx
(2f − h) = h + C1, (4.1a)

f +
1

α2

dp

dx
(2f − h) = C2, (4.1b)

where Ci , i =1, 2, are constants of integration. The constants Ci are evaluated by
prescribing the leading and trailing edge pressures. The Ci can be expressed as

C1 = −

∫ 1

0

α2(h − f )/(2f − h) dx

∫ 1

0

α2/(2f − h) dx

, (4.2a)

C2 =

∫ 1

0

α2f/(2f − h) dx

∫ 1

0

α2/(2f − h) dx

. (4.2b)

The pressure distributions from (4.1a) and (4.1b) are given by

p1(x) − p0 =

∫ x

0

α2(h + C1 − f )

2f − h
dx, (4.3a)

p2(x) − p0 =

∫ x

0

α2(C2 − f )

2f − h
dx, (4.3b)

in which p0 is the atmospheric pressure at x = 0 and 1 and the Ci are given by (4.2a)
and (4.2b). The total dimensionless lift force F is obtained by integrating (4.3a) and
(4.3b) over the entire surface. This leads to

F1 =

∫ 1

0

(p1(x) − p0) dx =

∫ 1

0

(1 − x)
α2(h + C1 − f )

2f − h
dx, (4.4a)

F2 =

∫ 1

0

(p2(x) − p0) dx =

∫ 1

0

(1 − x)
α2(C2 − f )

2f − h
dx, (4.4b)

where we have changed the order of integration in evaluating the double integral.
Once h(x) is prescribed, (4.2)–(4.4) provide a remarkably simple solution for the
pressure distribution and lift force in the compressed matrix layer for any h(x).
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4.1. Small α limit

In the limit α → 0, one can expand f in (2.6) as

f → h

2
− α2h3

24
+

α4h5

240
+ O(α6). (4.5)

If one substitutes the first two terms of (4.5) into (4.2a, b) and retains only the terms
which are order O(1), one finds that C1 = −C2 (see (4.8a, b). If these values of the Ci

are now put back in (4.1a, b) one obtains

dp

dx
= ±12C1

h3
± 6

h2
, (4.6)

where the minus sign describes case (a) and the plus sign describes case (b). Thus,
in the limit α = 0 the two cases are identical except that the pressure gradient at x
in case (a) is the negative of the pressure gradient at (1 − x) in case (b), as noted
previously. This is simply a result of the fact that the slopes of the upper boundaries
in figure 1(a, b) are reversed and when (4.6) is integrated the pressure profiles will be
mirror images of one another.

The above symmetry is lost once one retains the third term in (4.5). The common
expression α2/(2f − h) that appears in (4.2) and (4.3) can be expanded as

α2

2f − h
= −12

h3

(
1 +

α2h2

10
+ O(α4)

)
. (4.7)

To O(α2) one finds from (4.2a, b) that C1 and C2 are

C1 = −

∫ 1

0

(1/h2) dx

2

∫ 1

0

(1/h3) dx

− α2

20

∫ 1

0

(1/h3) dx

⎡
⎢⎢⎣11

6
−

∫ 1

0

(1/h2) dx

∫ 1

0

(1/h) dx

∫ 1

0

(1/h3) dx

⎤
⎥⎥⎦ +O(α4),

(4.8a)

C2 =

∫ 1

0

(1/h2) dx

2

∫ 1

0

(1/h3) dx

+
α2

20

∫ 1

0

(1/h3) dx

⎡
⎢⎢⎣1

6
−

∫ 1

0

(1/h2) dx

∫ 1

0

(1/h) dx

∫ 1

0

(1/h3) dx

⎤
⎥⎥⎦ +O(α4).

(4.8b)

Using (4.5) and (4.6) and simplifying, one obtains

p1 − p0 = −
∫ x

0

6

h2
dx −

∫ x

0

12C1

h3
dx − α2

10

[∫ x

0

12C1

h
dx + 11x

]
+ O(α4), (4.9a)

p2 − p0 =

∫ x

0

6

h2
dx −

∫ x

0

12C2

h3
dx − α2

10

[∫ x

0

12C2

h
dx − x

]
+ O(α4). (4.9b)

One can readily show that the term in α2 is positive for case (a) and negative for case
(b) indicating that the presence of the fibres increases the pressure in case (a) but
decreases it in case (b). The total dimensionless lift force F is obtained by integrating
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(4.9a) and (4.9b) over the entire surface.

F1 =

∫ 1

0

(p1 − p0) dx = −
∫ 1

0

(1 − x)

[
6

h2
+

12C1

h3
+

(
12C1

10h
+

11

10

)
α2 + O(α4)

]
dx,

(4.10a)

F2 =

∫ 1

0

(p2 − p0) dx =

∫ 1

0

(1 − x)

[
6

h2
− 12C2

h3
−

(
12C2

10h
− 1

10

)
α2 + O(α4)

]
dx.

(4.10b)

These results provide the lowest order correction to O(α2) for cases (a) and (b) that
arise from the difference between (2.8) and (2.12).

4.2. Large α limit

To examine the asymptotic behaviour of the pressure distribution in the soft porous
layer when α � 1, we notice from (2.8) that, in this limit, f ≈ α−1. If we consider case
(a), we find that (4.2a) and (4.3a) reduce to

C1 = −

∫ 1

0

(1/K̃p) dx

∫ 1

0

(1/hK̃p) dx

, (4.11a)

p1 − p0 ≈ −α2
2

∫ x

0

(h + C1)

K̃ph
dx. (4.12a)

If we consider case (b), we find that (4.2b) and (4.3b) reduce to

C2 =

∫ 1

0

(1/h

√
K̃p) dx

α2

∫ 1

0

(1/hK̃p) dx

, (4.11b)

p2 − p0 ≈ −α2

∫ x

0

⎛
⎝−α2C2

K̃ph
+

1

h

√
K̃p

⎞
⎠ dx. (4.12b)

In (4.11) and (4.12) we have rewritten α in a form where we can scale this spatially
varying parameter by its reference value α2 at h = h2. This scaling will permit us to
relate both α and Kp to their reference values at h = h2 in plotting our results as
described in the opening paragraph of the next section. Using (3.6) one can convert
the integrals on x in (4.11) and (4.12) to integrals on h that are much easier to
evaluate. For case (a)

C1 = − ln (1 − ln(k)/ ln(1 − ε2))

e− ln(1−ε2)
[Ei [ln(1 − ε2)/k] − Ei [ln(1 − ε2)]]

(4.13a)

in which

Ei(x) = −
∫ ∞

−x

e−t

t
dt,

and

p1 − p0 ≈ −α2
2

∫ h

1

h + C1

h2(1 − lnh/ ln(1 − ε2))
dh, (4.14a)
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whereas for case (b)

C2 =

∫ 1

k

(1/h3/2
√

1 − lnh/ ln(1 − ε2)) dh

∫ 1

k

(α2/h2(1 − lnh/ ln(1 − ε2))) dh

, (4.13b)

and

p2 − p0 ≈ −α2
2

∫ h

k

C2 dh

h2(1 − k)(1 − lnh/ ln(1 − ε2))

+ α2

∫ h

k

dh

h3/2(1 − k)
√

1 − ln h/ ln(1 − ε2)
. (4.14b)

In case (a) the above results are particularly useful for large α where p can be scaled
by α2

2 and the pressure profiles collapse into a single curve for a given h2 for each
value of the compression ratio k as deduced from (4.14a). In case (b) for α2 � 1 the
pressure asymptotically decays to zero as α−2

2 . These results are shown and discussed
in the next section.

5. Results
We shall explore the behaviour of cases (a) and (b) over a wide range of α2 and

compression ratio k =h1/h2. The length L of the planing surface does not appear
explicitly, but appears in the dimensionless expressions for the pressure and force per
unit width of planing surface. The characteristic pressure and lift force F per unit
width are given by μUL/h2

2 and μUL2/h2
2, respectively. The dimensionless height h is

scaled by the height h2 at the trailing edge in case (a) and the leading edge in case
(b). If h2 is arbitrarily fixed at 1 cm then a reference α2 can be defined by h2/

√
Kp2

where Kp2 is the reference Darcy permeability at this reference height. For h > 1, α

varies with x since both h and Kp are varying, but K̃p is only a function of h for each
value of k as shown in figure 3. Thus, to employ the results shown in figure 3 one
simply specifies α2, prescribes the fibre radius and finds Kp2 from figure 2. The fibre
radius rf used in all our calculations is 5 μm. This is characteristic of the polyester
fibres used in the applications in § 6.

In classical lubrication theory for a slipper bearing one examines the relative motion
of an inclined planar surface and a horizontal planar surface. Figure 4(a, b) shows
that the solution for the pressure distribution and lift force are independent of the
boundary which is moving, for reasons already discussed, and there is an optimum
compression ratio k =h1/h2 = 2.2 for maximum lift. As already noted, the solution for
the pressure distribution in case (a) is the mirror image of that in case (b) because the
inclination of the upper boundary is reversed. This symmetry is lost if the intervening
space is filled with a soft porous material.

Typical solutions for the pressure distribution beneath the planar surface when
the upper boundary moves (case a) and when the lower boundary moves (case b)
are shown in figures 5(a) and 5(b) for a compression ratio k =2 for values of α2 in
the range of 0 <α2 < 3. In figure 5(a) the thickness h2 and α2 at the trailing edge
are prescribed. The slope of the plane (h1 − h2)/L is given in terms of the matrix
compression ratio k = h1/h2 as (k − 1)h2/L (see figure 1a). In figure 5(b) the thickness
h2 and α2 at the leading edge are prescribed. The slope of the plane −(h1 − h2)/L is
given in terms of the matrix compression ratio k = h1/h2 as (1 − k)h2/L (see figure 1b).



160 P. Mirbod, Y. Andreopoulos and S. Weinbaum

0

0.05

0.10

0.15

0.20

0.25

0.30

0.2 0.4 0.6 0.8 1.0

k = 1.5

k = 2.2

k = 5

k = 10

k = 1.5

k = 2.2

k = 5

k = 10

h2 2
p/

μ
L

U

h2 2
F

/μ
L

2 U

x/L

k = 2.2 k = 2.2
α = 0

α = 0

(a) (b)

Case(b)

Case(a)

0

0.04

0.08

0.12

0.16

0.20

1.0 4.0 7.0 10.0
k = h1/h2

2.2

Figure 4. Classical lubrication theory α = 0. (a) Dimensionless pressure distribution for a
slipper bearing. (b) Dimensionless lift force as a function of compression ratio k showing a
maximum at k = 2.2.
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Figure 5. Dimensionless pressure distribution for compression ratio k = 2. (a) Inclined upper
boundary moves. (b) Horizontal lower boundary moves. Dashed line solution for small α,
(4.9a) in case (a), (4.9b) in case (b).

As can be seen in figure 5(a) when the inclined upper boundary moves the
dimensionless pressure increases rapidly for α2 > 1 with the peak value of pressure
being more than four-fold greater for α2 = 3 than for α = 0. In contrast, when the
horizontal lower boundary moves, the pressure profiles decay slowly for α2 > 1. In
figure (6a, b) the corresponding pressure profiles are shown for a large compression
ratio k = 10. A qualitatively similar behaviour is observed except that in both figures
there is a pronounced shift of the pressure maximum towards the trailing edge at
x = 0 for case (a) and the leading edge at x = 1 for case (b). Note the six-fold difference
in scales between figures 6(a) and 6(b) where the results for α = 0 are the same, but
mirror images of one another. In view of the large pressure gradients near the leading
and trailing edges observed for large values of k one needs to be concerned about the
assumption that the pressure is a constant across the porous layer in these regions.
The length of these regions is of order H, whereas the length scale of the region with
the steep pressure gradient is of order 1/k. Thus, for the vertical pressure gradient
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Figure 6. Dimensionless pressure distribution for compression ratio k =10. (a) As the upper
boundary moves and (b) as the lower boundary moves.
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Figure 7. Dimensionless lift force as a function of compression ratio k. (a) Inclined upper
boundary moves and (b) horizontal lower boundary moves.

to be neglected at the leading and trailing edges, we require L/H > k. The same
approximation also applies for the classical lubrication results depicted in figure 4.

Figure 7 shows the dimensionless lift force as a function of k. We note that in
figure 7(a) there is an optimum compression ratio for the dimensionless force at
k = 2.2 when α =0, but when α increases its maximum increases in magnitude and
shifts to values of k > 2.2. In case (b) (figure 7b), there is the same maximum at k = 2.2
when α = 0, but the maximum decreases with increasing α. To examine the asymptotic
behaviour for large α2 we have rescaled the dimensionless pressure by α2

2 in (4.14a) for
case (a), since our asymptotic analysis in § 4.2 indicates that for case (a) the pressure
and hence the lift force increases as α2

2 increases. The analysis indicates that with this
new scaling the new dimensionless pressure and lift force curves collapse into a single
curve for large α2. The results shown in figure 8(a) clearly indicate that there is very
little difference between the curves for α2 = 20 and 100 and, thus, for most practical
purposes the simplified asymptotic solution can be applied for α2 > 20. In contrast,
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Figure 9. Asymptotic behaviour (α2 � 1) for pressure distribution. k = 2 (a) and lift force
(b) when the horizontal lower boundary moves (case b).

the pressure disturbance and lift force for case (b), lower boundary moving, die out
rapidly for α2 � 1, as shown in figure (9a, b).

Figures 10(a, b) show the velocity profiles in the fibre matrix for representative α2

for cases (a) and (b), respectively, for k = 4. Three sets of profiles are shown in each
panel, which corresponds to the leading and trailing edges and the position where the
pressure reaches its maximum. For comparison the prediction of classical lubrication
theory, α = 0, is also shown. We note that at the position where the pressure gradient
is zero in classical lubrication theory the velocity profile is linear, but as the fibre
interaction layer parameter α2 increases, thin fibre interaction layers develop near
both the upper and lower boundaries provided there is a non-vanishing bulk flow in
the matrix. In marked contrast to classical lubrication theory, where there is a uniform
shear flow at the maximum pressure, it is the bulk flow that vanishes at the location
where dp/dx = 0 for large α2, since the local pressure gradient is the driving force for



On the generation of lift forces in random soft porous media 163

(a)

(b)

= 0
dx

dp

Leading edge

0

0.2

0.4

0.6

0.8

1.0

–2 –1 10

z

u(0, z)/U

α2 = 0
α2 = 2
α2 = 10
α2 = 100

α2 = 0
α2 = 2
α2 = 10
α2 = 100

α2 = 0
α2 = 2
α2 = 10
α2 = 100

α2 = 0
α2 = 2
α2 = 5
α2 = 10
α2 = 100

α2 = 0
α2 = 2
α2 = 5
α2 = 10
α2 = 100

α2 = 0
α2 = 2
α2 = 5
α2 = 10
α2 = 100

0

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0

u(xm, z)/U

0

1

2

3

4

0.4 0.8 1.2

u(1, z)/U

Leading edge

0

1

2

3

4

–0.2 0.3 0.8 0

0.4

0.8

1.2

0.2 0.4 0.6 0.8 1.0 0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5

Trailing edge

Trailing edge= 0
dx

dp

h2

z
h2

Figure 10. (a) Velocity profiles in fibre layer for representative α2 when the upper boundary
moves in the transformed steady coordinate frame where the upper boundary is stationary and
the lower boundary with attached fibre layer moves beneath it, case (a). (b) Velocity profiles
in fibre layer for representative α2 when the lower boundary moves, case (b). Three sets of
profiles are shown which correspond to the leading and trailing edges and the position where
the pressure reaches its maximum, xm (k = 4 for all profiles).

the flow in the interior of the fibre layer in this limit and this gradient vanishes at
the maximum pressure. When there is no bulk flow, u = − 1, since this is the velocity
at which the fibre layer is moving to the left in the steady frame. In case (b), where
the lower boundary is moving, an increasingly smaller amount of fluid is dragged
through the leading edge as α2 is increased since the fibre interaction layer near the
lower boundary grows thinner and the bulk motion in the interior dies out for α2 � 1.
In sharp contrast to classical lubrication theory, where the motion of lower boundary
is transmitted as a shear force at the upper boundary, the presence of the fibre layer
shields the upper boundary and serves as a barrier to greatly retard the flow. In
case (a), large pressure gradients are generated in the interior of the fibre layer as α2

increases. Basically, the inclined upper boundary is pushing fluid ahead of it in the
unsteady reference frame in figure 1(a) creating a bulk flow in the fibre layer, which
would vanish if this plane was not sloped upward. A curious feature for case (a),
first pointed out in Feng & Weinbaum (2000), is that in the unsteady reference frame
this flow is leaving at both the leading and trailing edges and a dividing streamline
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develops beneath the inclined plane whose location depends on the compression
ratio k.

6. Discussion
It may seem counter-intuitive, at first, that the solutions for cases (a) and (b) herein

should differ so greatly from those of classical lubrication theory for a slider bearing
when α is increased. However, the presence of the porous medium introduced an
additional α2 term in (2.3) when a steady-velocity transformation was introduced.
The governing equation (2.3) thus differed depending on whether the porous media
layer was attached to the lower or upper boundary. In marked contrast, in classical
lubrication theory a simple transformation of coordinates leads to the same boundary
value problem. Also, the numerical solutions in Feng & Weinbaum (2000) exhibit a
lift force that monotonically increases with increasing k and the reason for the loss
of the maximum at k = 2.2 was not clear. This result is now clearly explained by the
results in figures 7(a) and 8(b) in which h2, the height of the trailing edge in case
(a) is fixed rather than h1 at the leading edge. One observes there is an optimum
compression ratio for the dimensionless force at k = 2.2 when α =0, but when α

increases the maximum increases in magnitude and shifts to values of k > 2.2. This
maximum is also present when the lower boundary is moving, but decays as α2

2 for
large α2 as shown in figure 9(b).

The results in figures 8 and 9 provide the key insight into the difference in behaviour
between red cells moving in single file in small capillaries and narrow glass tubes of
the same diameter, as described in § 1. The value of α has been estimated as 160 for a
0.5 μm thick endothelial glycocalyx layer in Feng & Weinbaum (2000). The results in
figure 8(a, b) show that for this value of α one has approached the limiting behaviour
for both the pressure and the lift force exerted on the red cell membrane. Greatly
enhanced lift forces separating the red cell and endothelial cell membranes will be
present at very low velocities. These forces are more than four orders of magnitude
greater than classical lubrication theory without the fibre layer present. Thus, the red
cell will be displaced from the capillary wall when it is moving only a few micrometres
per second, a speed which is much less than the ∼100 μms−1 velocity that the red
cell typically experiences in single-file flow in skeletal-muscle capillaries. This lift force
is very important at arteriolar sphincters which control the distribution of flow in
capillary networks. At these sphincters the vessels can narrow to as little as 4–5 μm
diameter and the velocity of the red cell will slow to a few micrometres per second.
The lift forces described herein prevent the glycocalyx from being crushed and the
formation of adhesive interactions between membrane proteins in the red cell and
the endothelial membranes that could lead to the arrest of the microcirculation. The
behaviour of red cells in glass tubes suggested by the pressure profile in figure 9 is
strikingly different. In this case the glycocalyx layer on the red cell membrane, whose
existence has been hypothesized but not yet clearly demonstrated, generates a lift
force that is nearly entirely attenuated for α > 20. Therefore, tightly fitting red cells
fill nearly the entire glass tube and experience much less resistance than red cells
moving in capillaries with the same diameter as described by Pries et al. (1994, 2000).

The most important new result is the demonstration that the dimensionless lift
force per unit width (h2

2F)/(α2
2μL2U), which can also be written as (Kp2

F)/(μL2U),
approaches a simple asymptotic behaviour for large α2 as shown in figure 8(b). This
result has important implications for generating lift forces on inclined surfaces moving
over a stationary porous medium that vastly exceed those of classical lubrication
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theory provided leakage of pressure at lateral edges can be eliminated. This was
realized in F&W and Wu et al. (2004), but an inexpensive soft durable fibrous
material had not yet been identified. The properties of such a material are explored
in Mirbod et al. (in press). This material is a random fibre matrix with nearly
uniform 10 μm diameter polyester fibres with a trace of silk. Kp for these fibres
is well described by an empirical Carman–Kozeny relation for porous media. The
experiments in Mirbod et al. (in press) show that the length of fibre per unit volume
is 5950 cm cm−3 in its undeformed state. This corresponds to a solid fraction of 0.0045
and a value of Kp of 3.4 × 10−5 cm2 using figure 2. It is a simple matter to calculate
the lift force on a planing surface for any value of the compression ratio k using
figure 8(b). As a practical matter a light highly porous protective screen rests on top
of the porous layer. This is tethered to the impermeable sidewalls of the channel to
reduce shear deformation.

To illustrate the above application consider a planform with the typical dimensions
of a toboggan, 2 m long and 0.5 m wide or a planning area of 1 m2. Assume that h1

at the leading edge is 10 cm and h2 at the trailing edge is 5 cm or k = 2. If the layer
compresses in a locally uniform manner the solid fraction at the trailing edge will be
doubled or (1 − ε) = 0.009. From figure 2, Kp2

= 1.57 × 10−9 m2 and α2 = 1260. The
curve for (Kp2

F)/(μL2U) for α2 = 1260 is nearly indistinguishable from the curve for
α2 = 100 in figure 8(b). For k = 2, (Kp2F)/(μL2U) is 0.037. All the parameters in the
dimensionless expression for the lift force are now known except for U, but the latter
scaling is linear. Using the value of μ for air at 20 ◦C, which is 1.73 × 10−5 Ns m−1, one
finds that F = 815 U in Nm s−1. At a velocity of 10 m s−1 this toboggan can support
8150 N or 0.83 metric tons. This force due to the trapped air in the porous material
is many times the lift force of the solid phase because the material has the softness
of cotton. It is hard to imagine that so much weight can be supported by a material
with the properties of a common pillow with relatively little compression.

As first proposed in Wu et al. (2004) such large lift forces could potentially be used
in commercial transportation. In Mirbod et al. (in press), we explore this concept
for a 200 passenger jet train weighing approximately 70 metric tons, supported by
a 30 × 3 m planform that glides on a 20 cm thick soft porous track in a channel a
few tens of centimetres above the surface of the ground. The calculations in Mirbod
et al. (in press) predict that the train would become airborne at velocities less than
5 m s−1 with only a 20 % compression of the fibre layer (4 cm) at the trailing edge
of the planform for lift-off. For a 10 μm fibre the Reynolds number (Re) at lift off
is ∼0.5. For such small compressions the fibre phase provides less than 0.5 % of the
total lift and friction forces are negligible compared to aerodynamic drag. The track
requires a highly porous light-weight protective screen that rests on the top of the
porous layer to protect it from wear, tear and debris. This protective screen could
also have narrow felt gliding strips at its edges to minimize pressure leakage at the
lateral edges of the planform. It would also greatly reduce shear deformation in the
thin fibre interaction boundary layer beneath the moving inclined upper boundary.
One finds that this airborne jet train needs far less powerful jet engines and consumes
far less energy than commercial aircraft with the same passenger load since there
is no need to climb to cruising altitude and lift induced drag is negligible since the
maximum angle of attack is less than 0.1 ◦.
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